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Absiract. We derive analytical expressions for the connections of large percepmns. by sludying 
the fixed points of the percepron leaming d e .  If lhe mining set consists of all possible 
input vectors. we can & u h  (for large systems) the connections as a series expansion in 
the system size. The leading term in this expansion turns out to be either the Hebb rule (for 
unbiased distributions) or the biased Hebb rule (for biased distributions). The perf0rmanCe Of 

our asymptotic expressions (and finite-size conections) on small systems is studied numerically. 
For, the more realistic case of having an exlensive vaining set (pattems learned with UdNng 
noise) we derive a selfconsislenl set of coupled non-linear equations for the connections. In 
the limit of m mining noisa~lhe solution of these equations is shown to give the connections 
with maximal Srabilily in lk Gardner &se. 

1. Introduction 

One of the simplest (and oldest) models for the evolution in time of connections in neural 
systems is the perceptron [ 1,2], equipped with the perceptron leaming rule. Because of its 
simple architecture a perceptron can only perform a restricted set of operations, the socalled 
linearly separable functions. Nevertheless. perceptrons are a popular subject of study since 
the percepmn leaming rule is one of the most transparent models for learning in neural 
systems for which a convergence theorem has been proved [2]. If a given task is linearly 
separable, then the perceptron learning rule converges in a finite number of iteration steps 
towards a connection vector that Faithfully performs the task. 

Statistical mechanical studies of perceptrons have resulted in a wealth of knowledge 
about properties like storage capacity, generalization 13.41 and in a number of~even more 
efficient perceptron-like leaming rules 15-81 (with associated convergence theorems). For 
a more detailed overview of the literature on perceptrons and their properties we refer to 
textbooks like 12.9, IO] or the recent review by Watkin ef al [I I]. In particular Opper 
[12,13] seems to have been the first to study analytically the dynamics of perceptron-like 
leaming rules (he calculated leaming times and the probability density of the embedding 
strengths of patterns in an optimally stabilized perceptron). What is still missing in the 
literature, however, is a method to calculate analytically the connections which are the 
outcome of such leaming rules. More generally: given a linearly separable task T and 
given a training sEt ~~ of input vectors one would like to calculate the connection vectors 
J that will faithfully perform the task T for all vectors in C2. 

In this paper we address this problem. We try to calculare the connection vectors J 
that perform a given task T on a given input set Q s 1- I .  by using the fact that such 
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connections are fixed points of the perceptron leaming rule. If the training set consists of 
all possible input vectors, S2 = I- I .  I I N ,  the fixed-point equations enable us to calculate 
the connections as a series expansion in powers of I/+% (N is the number of input units). 
If, on the other hand, the training set consists of an extensive number p = aN of prototype 
pattems in combination with small regions 51, around these pattems (i.e. training with 
noise), we find that the connections satisfy a self-consistent set of non-linear equations. In 
the limit of zero training noise the solution of these equations gives exactly the interactions 
with maximal stability in the Gardner sense. 

W A J J Wiegerinck and A C C Coolen 

2. The percept” fixed-point equation 

Astandardperceptron[1,2]pelformsamappingfrom [ - I ,  to[-l,l](Nisthenumber 
of binary input units). The state U of the binary output unit depends on the states of the N 
binary input units si E (-1, I}N in the following way: 

U(S) = ~ g n ( J - s )  J E RN . (1) 

Those mappings T : (-1. I I N  -+ (-1. I ]  that can be written in the form ( I )  are called 
linearly separable functions. Given a specific linearly separable function T and a set 
51 2 1-1, I I N  of input vectors. the perceptron problem is: find a vector J E RN of 
connections such that u(s) = T ( s )  for all s E Q. The vectors J that solve the pmblem are 
the solutions of 

s@( J . S)  = T ( s )  VS E S2 . (2) 

This paper hies to calculate the solutions of (2) and to find an analytical expression for the 
connections J in terms of the task T on 51. 

Instead of trying to solve (2) directly, we will make use of a specific propetty of the 
perceptron leaming rule [ I ,  21, of which we know that the fixed points are solutions of (2). 
The perceptron leaming rule is defined as the modification of connections via the following 
stochastic procedure: 

( I )  draw at random an input vector s E S2 according to the 

(3) 
probability distribution p(s) 

(2) A J  = $ E S [ T ( S )  - sgn(J. s) ]  
(3) retum to ( I )  

where E z 0 is the learning parameter. This procedure was shown [2] to converge in 
a finite number of iteration steps towards a solution of (2). provided that T is indeed 
linearly separable (which we assume to be the case). Calculating the fixed points of (3) 
is equivalent to solving the original problem (2). By writing the perceptron learning rule 
as a master equation, and expanding the master equation in powers of E, we can separate 
the macroscopic part (of order E’) from the fluctuation part (of order ,E) 1141. After a 
rescaling of time by a factor E, the macroscopic part obeys the deterministic differential 
equation 

d l  Z J  = z(s[T(s)  - sgn(J. s ) ] ) ~  
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where (. . .)a indicates averaging over the distribution p(s ) .  Whatever the details of the 
fluctuation part, we know the perceptron rule will evolve towards a fixed point Fixed 
points of the (stochastic) rule (3) are automatically fixed points of the above deferminisliL. 
equation. An important property of the perceptron leaming rule is that the inverse of this 
statement is found to be true as well: 

T ( s )  = sgn(J. s) vs E Q 0 (sT(s))n = (ssgn(J * s))n. (4) 

It is trivial to prove that the right-hand side of (4) follows from the left-hand side. Here 
we wilt only prove the complementary statement. Since T is linearly separable on Q (by 
definition), there exists a vector B E RN, such that T ( s )  = sgn(B. s) on 52. This allows 
us to write 

O =  B . ( s T ( ~ ) ) n - B . ( s ~ g n ( J . s ) ) n  = ( [ B * ~ l [ l  - sgn(B*s )~gn(J - s ) ] ) a  

Since IB. SI z 0 (Vs E Q), we must conclude that sgn(B. s) = sgn(J. s) (Vs E Q) 
(which completes the proof of (4)). Note that the fixed-point theorem (4) is exact for all N, 
all Q g {-I, 1)’”. all non-zero distributions p ( s )  on Q and all linearly separable tasks T. 

Theorem (4) provides a reduction of the original problem (2) of finding the solution 
of a set of IQ[ coupled inequalities to the problem of tinding the solution of a set of N 
coupled non-linear equations. The  rest of our paper aims at calculating the solutions of 
these equations: 

( s T ( s h  = ( s s g n ( J .  s))n (5 )  

where there is still freedom in choosing any (non-zero) probability distribution on Q. We 
interpret this distribution as defining the probabilities with which individual inputs s E 52 
are drawn during the leaming process. 

3. Homogenous distributions 

In this section we use the fixed-point theorem (3) for calculating analytically (as a series 
expansion in inverse powers of the system size N )  the connections~that perform a given 
task T ,  for the simplest case in which the training set consists of the set of all possible input 
vectors: 51 = {-I ,  I I N .  We study two choices with respect to the probability distribution 
on this training sec unbiased (uniform) probabilities and biased probabilities. 

3.1. Unbiased homogeneous disrrihurion 

The first case we study is Q 1-1. I]’’’, p ( s )  = 2-N (the uniform distribution). In this 
case the right-hand side of (5) can ,be calculated exactly (including all orders of N). First 
we rewrite 

m 3; 
(si sgn(J. s ) ) ~  = dzPi(z) sgn[Ji + zI = 2 l  dzPi(z) (6)  

where 
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Note that the inversion symmetry p ( s )  = p(-s )  of the uniform distribution implies that 
P;(z) s Pi(-z). In appendix A we analyse probability distributions P(z )  of the above 
form. In terms of the variables at hand the result is 

W A J J Wiegerinck and A C C Coolen 

where 

The functions H ( x )  are the Hermite polynomials. The coefficients Dj.t.7) are given by 

mf+s=2 

where C, and Qjn(.f)  are defined as 

B, : Bemoulli numbers [151 

E LO. 11. 

Using (7) we can now perform the integral in (6). The equation from which the solution of 
the fundamental problem (5) must be calculated thereby becomes 

So far no approximation has been made. Equation (8) is completely equivalent to (5),  
including finite-size effects. However, (8) is much more suitable for calculating the solution 
J as a series in powers of N than the original equation (5). 

= I), we can 
expand (8) in powers of N - ' I 2  up to any desired order: 

If, for instance, we assume that = U(N-'12) (motivated by 
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where we have used Din = O(N'-"). Since 4 = O(N-'/') for all i ,  we expand the 
solution J of (9) in powers of N - l I 2 .  Substitution of this expansion into (9) yields 

where (s;T(s))n is found to be of order N-[12 .  Equations (IO), (11) show that, if for the 
training set we choose S2 = ( -1 ,  I ) N  with uniform probabilities and if the task vector E 
and thus the vector J have components such that J; = U(N-'/*), then (in first order in 
N - ] 1 2 )  we find the connections J to be proportional to the ones obtained by applying the 
Hopfield [I61 version of Hebb's [I71 rule to the full set ( - I ,  lJN of input vectors. This 
result agrees with the findings of Vallet [I81 who showed that for large systems ( N  + 00) 

and for a specific type of task vectors B (which satisfy our condition) Hebb's rule learns 
and generalises well if the number p of examples (drawn from a uniform distribution) 
diverges sufficiently fast (p," --f Od as N + CO). The second order ( N - 3 / 2 )  in (1 1) can 
be interpreted as finite-size corrections to Hebb's rule. 

3.2. Biased homogeneous distribution: the Gaussian approach 

S2 = {-1, lJN,  p ( s )  
individual probabilities are written as 

pi(s)  = 

The next case we will study is the biased homogeneous distribution of input vectors: 
~ I ( S I )  . . . p  N ( S N )  (the variables ( s i ]  are still independent). The 

+ai)6,.1 + + ( I  - a;)&.-I - 1 c a; c 1 .  

We will also allow for a threshold, both in the definition of the task 

T ( s )  = sgn(E. s + BO) 

and in the perceptron itself (e.g. by adding a dummy input variable SO = - I ) .  According to 
the fixed-point theorem (4) the solutions of the perceptron problem are the solutions ( J ;  Jo) 
of .  . . , , . .  , ,  

(sT(s))n = (ssgnn(J.s+ J d n  ( T ( s ) h  = (sgn(J.s+ JoNn 

To-simplify algebra we will now assume that for large N the terms cj Jj.sj have a Gaussian 
probability distribution (in appendix B  we analyse the conditions to be imposed on E and 
J for this assumption to be justified). In doing so we will no longer be able to~calculate 
finite size corrections to the N L* 03 result (in contrast to the approach followed in the 
previous subsection). After some algebra we now obtain 

1 1 
2 

J;(I + a i )  - JO - J . a  
+ - ( I  -ai)erf 
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in which oo = E, J:(I - a:) and a: = ut - J:(l - a?). Since 
distribution we may use the fact that j ;  << I to expand (12). (13): 

W A J J Wiegerinck and A C C Coolen 

Jjsj has a Gaussian 

where .& = JO f J and Z 
in leading order 

2J-2a,2. We can now invert these relations and find for N + CO 

(15) 

Since a rescaling of both J and Jo does not affect the mapping performed by the perceptron 
(J; Jo), there is in principle no need to calculate the factor Z explicitly. If one puts a; = a 
and if the thresholds BO and JO are chosen to be zero, then (15) reduces to 

(16) 
- I  

J;  = $Si -U)T(s))n 

where Z' is a proper normalization factor. Finally one can verify that for a = 0 one recovers 
the first order of (IO). 

The final result of this section (equations (14x16)) shows that (in leading order in 
the system size N )  the connections J ,  expressed in terms of biased statistics of the binary 
input variables s;. are found to be proportional to the ones obtained by applying the biased 
Hebbian rule of [I91 to the full set {- I .  1 J N  of input vectors. The biased Hebbian rule of 
[I91 seems to make use of global information; since the Perceptron learning rule is non- 
local (because of the appearance of the crucial global term T ( s )  -sgn(J. s)) the resulting 
interactions are indeed allowed to depend on non-local quantities. The condition on the task 
vectors B for our analysis to apply is that for large N the inner product B s must have a 
Gaussian probability distribution. In addition we have found an expression for the threshold 
Jo. In appendix B we show that the assumption of a Gaussian distribution is justified with 
probability 1 if the task vectors B are drawn at random from, for instance, ~a spherically 
symmetric distribution or a hypercube in EtN. 

3 3 .  Numerical resulrs 

The performance in finite systems of our asymptotic (N + w) expressions for the 
connections is studied numerically. We calculate over a given ensemble P of linearly 
separable tasks the average overlap QN between the task function T(s) sgn(B.  s) 
and the perceptron mapping upon choosing for the connections J ( B )  either the truncated 
expansions (10). (11) or the result (16) obtained with the Gaussian approach 

QN 1 dB P ( B )  (sgn[B 81 sgn[J(B) SI), (17) 
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with 

If QN = 1 then, with probability one, the mappings performed by B and J ( B )  will be 
identical for tasks drawn from P. For the ensemble P ( B )  of tasks we took the uniform 
probability distribution over the N-dimensional hypercube. The integral in (17) is estimated 
numerically from 100 samples of randomly drawn task vectors B. The average over the 
input vector distribution is calculated exactly: since this average involves 2N input vectors 
a, we have restricted the range of our experiments to N c 20. 

In figure I we show the values of QN thus obtained upon choosing for J(B)  the 
leading order in N for unbiased distributions (the Hebb rule) as given by (10) (+), the first 
two leading orders in N for unbiased distributions (the Hebb rule corrected for finite size 
effects) as given by ( 1  1 )  (*) and the leading order in N for biased distributions (the biased 
Hebb rule), for a = 0.5. as given by (16) (0). For unbiased distributions we find that the 
asymptotic expressions (IO), (1 I )  are such that the corresponding perceptron mappings are 
almost identical to the task to be leamed, even for relatively small system sizes. Including 
the second order in N (*) indeed improves performance by correcting for finite-size effects. 
The fact that even the leading term (+) performs perfectly for N c 4 can be proved 
analytically. For biased distributions (0) we find that finite-size effects play a considerably 
more important role. 

.95 c w 

I I I ,  , , I  1 I I ,  I ,  I I I I I 
0 5 10 15 20 

N 
Figure 1. The awrage performance Qn as a function of lhe system size N. The connections 
m defined by the lading order in (IO) (the Hebb rule for unbiased input distributions) (+). the 
two leading orders in (I I) (the Hebb tule plus finite-size corrections) (e) and the leading order 
in (16) (the biased Hebb rule for biased input distributions) with bias a = 0.5 (12). 
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4. Inhomogeneous distributions: patterns 

In this section we use the fixed-point theorem (3) for calculating analytically the connections 
that perform a given task T for the more notorious case in which the training set consists of 
a union of clusters around p = aN pattems CJ’ (training noise): 52 U R # [ - I ,  IIN. 
We show that the asymptotic (N -+ m) connections are given by the solutions of a set of 
coupled non-linear equations. 

4.1. Training with noise 

We consider the case of having to classify a given set of p = aN input pattems 
E’” E [-I, I I N  (for N -+ m) using a perceptron without a threshold. To obtain a 
classification which is stable against input noise, the task is defined on small, equally 
large, disjunct neighbourhoods R, around the pattern e’: 

W A J J Wiegerinck and A C C Coolen 

@ .& 

T ( s )  = T(<@) VS E S2,  . 
The set 51 is the union of the p subsets: S2 I U, .R,. According to our fixed-point theorem 
(4). applied to the present situation, the connecttons performing the task T on z2 are the 
solutions of 

To simplify the analysis we replace the hard constraint (restricting the training vectors to 
the union of the p discrete subsets Q,<) by a so8 constraint, in which training vectors have 
a probability of occurrence which is strongly peaked near the pattems 6,: 

with 

in which a is chosen close to 1. Formally the task corresponding to the soft constraint 
is not neccessarily linearly separable and hence solutions of the correponding fixed-point 
equations need not exist. However, for a -+ 1 and N -+ m, the overlap between the 
individual distributions F, becomes arbitrarily small, so that one can expect solutions to 
exist. These solutions then correspond to the connections of a perceptron which is trained 
with noise, as studied by Wong and Shenington [20]. Replacing the hard constraint by the 
soft one in the way described above, we obtain instead of (18) the problem (19): 

To simplify notation we introduce the vectors cp = T ( c p ) l Q ,  in terms of which (due to 
the absence of a threshold) the task T can be written as T ( p )  = 1 (Vk). We can readily 
perform the remaining averages in (19). with the result 
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In leading order we may therefore write 

For convenience we introduce the parameter A = $aZ/(  I - a2) (so A + 00 as a --f 1) and 
the stability parameters y,, j .  Cl'. Assuming that a solution j of (20) exists with yH > 0 
for all F ,  we can use the asymptotic expansion of erf(x), 

exp(-x2) + . . . erf(x) = 1 - - I 
J;;x 

and obtain 

Note that (21) guarantees that any solution j will indeed be properly normalized (providing 
a nice self-consistency test, since normalization has not explicitely. been put in): 

By taking in (21) the inner products with the vectors C', we obtain equations in terms of 
stability parameters only: 

Equation (22) is the main result of this section. The solution of (22). inserted into (ZI), 
yields the solution of our original problem: the connections .?. 

E cI'T(c@), we find that the connections 
(21) are written in the form of a weighted Hebb rule with embedding strengths [we) :  

Restoring the original variables according to 

These equations give interesting relations between stability parameters and embedding 
strengths. The relations (23). in combination with 

~~ 

are equivalent to the equations (21). (22). A trivial example for which (23), (24) is solvable, 
is the case of orthogonal patterns C,, = a,,, for which one finds y,, = I/& and the 
connections are given by a normalized Hebb rule. 
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4.2. The limit of zero training noise 

In this subsection we show that the solution(s) of the self-consistency equations (22), 
in the limit of zero training noise (A + 00). are identical with the optimal connections in 
the Gardner sense. It has been demonstrated previously [5,12] that in characterizing the 
optimal connections one can distinguish two subsets of pattems. Pattems in the so-called 
active set have positive embedding strengths w,,; the optimal connections are given by the 
pseudo-inverse rule, restricted to the pattems in the active set. Pattems which are nor in 
the active set have zero embedding strengths; their stability parameters, however, are larger 
than the stability parameters of the pattems in the active set. 

We assume that, for large A, the stability parameters depend analytically on A-': 

W A J J Wiegerinck and A C C Coolen 

By taking the limit A + 03, those exponents for which y,,~ > ymjn vanish (by construction 
there is at least one index p with y,,~ = ymin). We define the index set 

K: = IP I Y ~ O  = ~ m i n l .  

For A -+ 03 we obtain from (25) 

This means that the A + 00 embedding strengths w,,. defined in (23). will obey 

w , = o  W G K .  

Apparently the embedding strengths corresponding to indices in the index set X: satisfy 
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Y 
Figure 2. Distribution p ( y )  of stabilities ( f iL )  obtained by solving r;u”cally (he set of 
equations (22) for randomly drawn paw” (N = 400. p = 600, A = 16). The result is 
averaged over 10 pailem realizations. Broken c w e :  distribution of stabilily parametah for 
Gardner‘s optimal connections (according 10 [?.I]) if a = 1.5. 

hence, if we denote by C ( K )  the correlation matrix C, restricted to the indices in the set 
K, the embedding strengths ID,, are given by 

w p  = 0 LL$K. 
These are exactly the embedding strengths corresponding to the optimal perceptron, 
described in the introduction of this subsection. One immediately recognizes the Structure 
of a pseudo-inverse applied to an active pattern set (our index set K). A pattern outside the 
active set has zero embedding strength. On the other hand, its stability parameter is larger 
than the minimal stability parameter (yMo =- ymin for p $ K) .  

This a posteriori justifies our assumption that, for large A (small amount of training 
noise), the hard constraint on the training set could be replaced by a soft one. Our solution 
is also in agreement with the work by Wong and Shemngton [20], who studied the learning, 
of noisy patterns and found that.forinfinitesimally small.amounts of noise one obtains the 
maximally stable connections. . 

4.3. Numerical results 

Apart from proving that in the limit of zero training noise A + 00 the solutions of the 
set of equations (22) become identical to the optimal interactions in the Gardner sense, one 
can of course also simply solve the set (22) numerically. The result, presented in the form 
of the familiar distribution p ( y )  of stabilities, shows how for~finite A one approaches the 
analytical expression for p ( y )  as found by Kepler and~Abbott [21]. figure 2 shows such 
a result, obtained by solving (22) numerically for p = 600 randomly drawn patiems in an 
N = 400 network with a level of training noise given by A = 16. The distribution p(y )  
[211 of Gardner’s optimal interactions [3] for (I = 1.5 is plotted as a reference. 
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5. Discussion 

The aim of this paper was to find analytical expressions for the connections of large 
perceptrons. We tried to calculate the connection vectors J that perform a given task 
T on a given input set Q C (-1. I t N ,  by using the fact that such connections are fixed 
points of the perceptron learning rule. For small values of the learning parameter this rule 
can be split into a macroscopic differential equation describing deterministic evolution and 
a part describing fluctuations. By proving that the fixed points of the deterministic equation 
are identical to the tixed points of the full stochastic d e ,  we obtain a reduction of the 
original problem (finding the solution of a set of I f 2  coupled inequalities) to the problem 
of finding the solution of a set of N coupled non-linear equations. 

For the simplest case in which the training set consists of all possible input vectors, 
Q =, [ - I ,  the fixed-point equations enable us to calculate the connections as a series 
expansion in powers of I fa. The leading term in this expansion tums out to be either the 
Hebb rule (for unbiased distributions) or the biased Hebb rule (for biased distributions). The 
performance of our asymptotic expressions (and finite-size corrections) on small systems is 
studied numerically. If. on the other hand, the training set consists of an extensive number 
p = aN of prototype patterns < I L  in combination with small regions around these 
patterns (i.e. training with noise). we find that the connections satisfy a self-consistent, 
physically transparant set of non-linear equations. In the limit of zero training noise the 
solution of these equations is shown to correspond exactly to the interactions with maximal 
stability in the Gardner sense. 

Most statistical mechanical studies of (maximally stable) percepvons concentrate on 
studying properties of trained systems [ 111 (storage capacity, average training error, average 
generalization error. nature of phase transitions, etc). In order to obtain these results one 
has to average the quantities of interest (or, equivalently, the free energy from which 
such quantities can be obtained by differentiation) over the distribution from which the 
training set is chosen. We believe that our approach may be complementary to such studies, 
in that we focus on the explicit canstruction of the connections of trained perceptrons. 
Furthermore, in the case of having an extensive ( p  = U N )  training set, the embedding 
strengths are formulated, through (22). (23). directly in terms of the pattern correlation 
matrix; no averaging over the distribution of input vectors is involved. 
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Appendix A. The Distribution P(z)  

In this appendix we calculate for any given vhtor K E RN the probability distribution 
P(z) (in the spirit of the Edgeworth series [22]), defined by 

P ( z )  (6(~ - K * s ) ) ~  
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2TN.  Using the integral representation of the &function where s E (-1. I I N  and p(s)  
we find 

P ( z )  = - 1 jdkexp[K ikz + ~ l o g c o s ( k k j ) ]  

1 2aK 

where K llKll and k K-IK. We now expand logcos(x) in a power series [15]: 

The coefficients Bk are the Bernoulli numbers 1151 (Eo = I ,  B ,  = -;, B2 = i, etc). This 
expansion enables us to write (AI) as 

1 P ( z )  = dk exp[-ik2 +.- ikz - xC,Q.(k)kZ" 
2irx K n32  

where Q,(k) = cj ky E 10. I ] .  If we also make the expansion 

we can perform the integration  over the variable k in (A2) and arrive at the final resulr 

where the functions H,(x) are the Hermite polynomials [I51 

7 d"' 
dr" 

&(x) ( - I ) ~  exp(x-)-exp(-x2). 

The coefficients &(k) are given by 

Appendiv B. Validity of the Gaussian assumption 

In this appendix we briefly discuss the validity of the assumption (often made in the 
literature) that the stochastic variable I = cy=, Jjsj h a i  a Gaussian probability distribution 
in the limit N + w, where 

, .  

p(s) = n P j ( s j )  . P j ( S )  = ; ( I  +Uj)&,I + ;(I -uj)'%,-l . lUjl i tUTXl < I .  
j 
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It is clear that P ( r )  will not always be Gaussian, since one can easily construct counter- 
examples: 

W A J J Wiegerinck and A C C Coolen 

Jk = k-' a x = O  k = 1  ... N .  @ I )  

For this specific example one finds 

K2 1 1 ~ 4  
Iim (z4) = - 

180 . Iim (2') = - 
6 N-W 

( 2 )  = (2) = 0 
N-CD 

So the distribution of L tends not to a Gaussian, since even in the limit N -+ 00 one finds 
( z4)  # 3(2')'. Starting from the central-limit theorem [22], it is straightforward to show 
that the condition on the normalized vector j for arriving at a Gaussian distribution for 
z = cj Jjsj, is 

in which 8[x] is the step function. One can check that if (B2) holds, all the non-Gaussian 
contributions in the probability distribution (A3) will vanish in the limit N -+ 00. The 
condition (B2) is clearly violated by the counter-example (BI). If the vector J is drawn 
from a spherically symmetric distribution, or from a hypercube with uniform distribution, 
then one can show that condition (82) is satisfied with probability 1. 
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