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Abstract. We derive analytical expressions for the connections of large perceptrons, by studying
the fixed points of the perceptron learning rule. [f the training set consists of alf possible
input vectors, we can calculate (for large systems) the connections as a series expansion in
the system size. The leading term in this expansion tums out to be either the Hebb rule (for
unbiased distributions} or the biased Hebb rule (for biased distributions). The performance of

" our asymptolic expressions {and finite-size corrections) on small systems is studied numerically.
For the more realistic case of having an extensive training set (patterns learned with training
noise) we derive a self-consistent set of coupled non-linear equations for the connections. In
the limit of zero training noise, the selution of these equations is shown to give the connections
with maximal stability in the Gardner sense.

1. Introduction

QOne of the simplest {(and oldest) models for the evolution in time of connections in neural
systems is the perceptron [1, 2], equipped with the perceptron leaming rule. Because of its
simple architecture a perceptron can only perform a restricted set of operations, the so-called
linearly separable functions. Nevertheless, perceptrons are a popular subject of study since
the perceptron leaming rule is one of the most transparent models for learning in neural
systems for which a convergence theorem has been proved [2]. If a given task is linearly
separable, then the perceptron learning ruie converges in a finite number of iteration steps
towards a connection vector that faithfully performs the task.

Statistical mechanical studies of perceptrons have resulted in a weaith of knowledge
about properties like storage capacity, generalization [3,4] and in a number of even more
efficient perceptron-like learning rules [5-8] (with associated convergence theorems). For
a more detailed overview of the literature on perceptrons and their properties we refer to
textbooks like [2,9,10] or the recent review by Watkin er @/ [11]). In particular Opper
{12,13] seems to have been the first to study analytically the dynamics of perceptron-like
learning rules (he calculated leamning times and the probability density of the embedding
strengths of patterns in an optimally stabilized perceptron). What is still missing in the
[iterature, however, is a method to calculate analytically the connections which are the
outcome of such learning rules. More generally: given a linearly separable task 7 and
given a training sét & of input vectors one would like to calculate the connection vectors
J that will faithfully perform the task T for all vectors in £2.

In this paper we address this problem. We try to calculate the connection vectors J
that perform a given task 7 on a given input set 2 € {—1, 1}V, by using the fact that such
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connections are fixed points of the perceptron learning rule. If the training set consists of
all possible input vectors, @ = {—1. 1}", the fixed-point equations enable us to calculate
the connections as a series expansion in powers of 1/+/N (N is the number of input units).
If, on the other hand, the training set consists of an extensive number p = aN of prototype
patterns £* in combination with small regions §2,, around these patterns (i.e. training with
noise), we find that the connections satisfy a self-consistent set of non-linear equations. In
the limit of zero training noise the solution of these equations gives exactly the interactions
with maximal stability in the Gardner sense,

2. The perceptron fixed-point equation

A standard perceptron ||, 2] performs a mapping from {—1, I} to {~1, 1} (N is the number
of binary input units). The state & of the binary output unit depends on the states of the N
binary input units 5; € {—1, 1} in the following way:

u(s) = sgn(J - 8) JeRY. (1)

Those mappings T : {—I, 1}¥ — {—1, 1} that can be written in the form (1) are cailed
linearly separable functions. Given a specific linearly separable function T and a set
Q < {—1, 1}¥ of input vectors, the perceptron problem is: find a vector J € RV of
connections such that u(s) = T (s} for all 8 € Q. The vectors J that solve the problem are
the solutions of

sgn(J - 8) = T(s) Yae Q. )

This paper tries to calculate the solutions of (2) and to find an analytical expression for the
connections J in terms of the task 7 on £2,

Instead of trying to solve (2) directly, we will make use of a specific property of the
perceptron learning rule [1,2], of which we know that the fixed points are solutions of (2).
The perceptron leaming rule is defined as the modification of connections via the following
stochastic procedure:

(1) draw at randcm an input vector 8 € $2 according to the

probability distribution p(s) 3)
(2) AT = es[T(s) — sgn(J - 3)]
(3) return to (1)

where € > 0 is the learning parameter. This procedure was shown [2] to converge in
a finite number of iteration steps towards a solution of (2), provided that T is indeed
linearly separable (which we assume to be the case). Calculating the fixed points of (3)
is equivalent to solving the originat problem (2). By writing the perceptron leaming rule
as a master equation, and expanding the master equation in powers of ¢, we can separate
the macroscopic part (of order €°) from the fluctuation part (of order ./€) [14]. After a

rescaling of time by a factor ¢, the macroscopic part obeys the deterministic differential
equation

J = 3{slT(s) — sgn(J « B}a

& a
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where {---)o indicates averaging over the distribution p(s). Whatever the details of the
fluctuation part, we know the perceptron rule will evolve towards a fixed point. Fixed
points of the (stochastic) rule {3) are automaticaily fixed points of the above deterministic
equation. An important property of the perceptron learning rule is that the inverse of this
statement is found to be true as well: '

T(s) = sgn(J - 8) Ve e 2 & {8T(8))q = {asgn{J - 8))q. 4)

It is trivial to prove that the right-hand side of {(4) follows from the left-hand side. Here
we will only prove the complementary statement. Since 7T is linearly separable on £ (by
definition), there exists a vector B € R”, such that T(s) = sgn(B 8) on 2. This allows
us to write

0=B-(sT(s)o~B-(ssgn(J - 8)lo = (B - s|[1 - sgn(B - s)sgn(J - 9)]}a

Since |B - 8| > 0 (Vs € ), we must conclude that sgn(B - ) = sgn(J - 8) (Vs € Q)
{which completes the proof of (4)). Note that the fixed-point theorem (4) is exact for all N,
all @ € {—1, 1}, all non-zero distributions p(s) on §2 and all linearly separable tasks T.

Theorem (4) provides a reduction of the original problem (2) of finding the solution
of a set of |{2| coupled inequalities to the problem of finding the solution of a set of N
coupled non-linear equations. The rest of our paper aims at calculating the solutions of
these equations:

(8T(8))o = (ssgn(J - 8)}n (5

where there is still freedom in choosing any (non-zeroﬁ probability distribution on 2. We
interpret this distribution as defining the probabilities with which individual inputs 5 € £
are drawn during the learning process. .

3. Homogenous distributions

In this section we use the fixed-point theorem (3) for calculating analytically (as a series
expansion in inverse powers of the system size N) the connections-that perform a given
task T, for the simplest case in which the training set consists of the set of all possible input
vectors: § = {—1, 1}¥. We study two choices with respect to the probability distribution
on this training set: unbiased (uniform) probabilities and biased probabilities. .

3.1. Unbiased homogeneous distribution

The first case we study is = {—1. 1}V, p(8) = 2~V (the uniform distribution). In this
case the right-hand side of (5) car be calculated exactly (including all orders of N), First
we rewrite

. L
(s sgn(J - )} = f GeP@senlh+21=2 | dzP2) ©)
—so 0

where

so={fe-g)

i#
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Note that the inversion symmetry p(8) = p(—8) of the uniform distribution implies that
P:(z) = Pi(~z). In appendix A we analyse probability distributions P{z) of the above
form. In terms of the variables at hand the result is

2 .
ﬁ(z)ﬁ[wf?]“”exp[—fﬁ][ ~Y " D)1 )"z""Hzn( w2 )] 7

nz2

= Y RF=Wy1-7  L=4/171.
o

The functions H{x) are the Hermite polynomials. The coefficients D;, (J) are given by

) (=Dt &
Dalr= 2, (k+1):mz=2'"

ksnf2—-1

where

Z: Bn. Zrm [ my - ﬂm;t Ql'm:(j) v Qimk+1(j)]

Me4i=2
where C, and Q,—,,(f ) are defined as

2122 — )] By,]
n{2n)t

Qin = %@?" [1-7]" e

Cr

1A

B,, : Bemnoulli pumbers [15]

Using (7) we can now perform the integral in (6). The equation from which the solution of
the fundamental problem (5) must be calculated thereby becomes

. f,?
{5;T(8))a = Crf[f\/—__ﬁjl exp[ - ff]

Y
x2, Dm(J)Z'"(—l)"H:m !(:/T—Z') . ®
2

nz? 1 - _11.2

So far no approximation has been made. Equation (8) is completely equivalent to (5),
including finite-size effects. However, () is much more suitable for calculating the solution
J as a series in powers of N than the original equation 3).

If, for instance, we assume that J; = O(N~'/%) (motivated by 212 1), we can
expand (8) in powers of N~!/2 up 1o any desired order:

. _J2; 312 _\E AL R w i 52
(SrT(S)}n—J;L+O(N )= n[;,+3;,. 4J,JZ_J,-]+O(N ) ©)
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where we have used Dy, = O(N'™"). Since J; = O(N~Y2) for all i, we expand the
solution J of (9) in powers of N ~'/2, Substitution of this expansion into (9) yields

Ji = ‘/?sfrcs»g + Oy (10)
) N » _
= \/gcs.-rcs»g[l - SET@R+ ;(-SJT(S))?:] +OW™aD

where {5;T(8))q is found to be of order N~!/2, Equations (10), (11} show that, if for the
training set we choose © = {—1. I}¥ with uniform probabilities and if the task vector B
and thus the vector J have components such that J; = O(N~'/2), then (in first order in
N~—1/2) we find the connections J to be proportional to the ones obtained by applying the
Hopfield [16] version of Hebb’s [17] rule to the full set {—1I, 1}V of input vectors. This
result agrees with the findings of Vallet [18] who showed that for large systems (N — o0)
and for a specific type of task vectors B (which satisfy our condition) Hebb’s rule learns
and generalises well if the number p of examples (drawn from a uniform distribution)
diverges sufficiently fast (»/N — o¢ as N — o0). The second order (N~*2) in (11) can
be interpreted as finite-size corrections to Hebb's rule.

3.2. Biased homogeneous distribution: the Gaussian approach

The next case we will study is the biased homogeneous distribution of input vectors:
Q = {—1, 1}, p(s} = pi(51)... py(sy) (the variables {s;} are still independent). The
individual probabilities are written as -

pi(8) = 5(1 +a)dey + 3(1 — a5y -l<a<l1.
We will also allow for a ihweshold, both in the definition of the task

T(s) = sgn(B - s+ By}
and in the perceptron itself (e.p. by adding a dummy i‘nput variable 55 = —1}. According to
the fixed-point theorem (4) the solutions of the perceptron problem are the solutions (J; Jo)
of. C o '

(8T(8)}a = {ssgn(J - 8 + Jo))a (T(8))a = (sgn(J - 8 + Jo))a.

To simplify algebra we will now assume that for large N the terms ZJ,- J;s; have a Gaussian
probability distribution (in appendix B we analyse the conditions to be imposed on B and
J for this assumption to be justified). In doing so we will no longer be able to'calculate
finite size corrections to the N > oo resuit (in contrast to the approach followed in the
previous subsection). After some algebra we now obtain

(5:T(s)}a = %(l ;I-af)erf[J"(l —at ot d- a]

V20,

1 L Jh+ay—do—T-a]
+ 5 —-a.)erf[ S ] (12)
Ho+Ja
T(8)}q = erf] ——— 13
{T(3)a el: N ] (13}
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in which 6o = 3°; J(1 — &) and o = o} — JH(1 — a}). Since T, J;5; has a Gaussian
distribution we may use the fact that Jilto expand (12}, (13):

~ 7. ) ~ ,.- a2 .
(5;T(8Ma =a; erf[f%—cﬂ:l + Ji(] — a,-z)\[;_z exp[—- (o +; @) ] + 037
(T(8))a = erf[(—J‘lfj_’Z'—'fl]

where fo =Jy/fand Z =27 'Zag. We can now invert these relations and find for N — o0
in leading order

Ji= T—”f_iz)«s: — apT(sNaexp[erf (T(s)e)]" (14)

Jo= ﬁ[ert" (T (s)a) - ‘/T’? 3 %5((::,- — a)T(s)aexp e (T (3))9)]2] :
7 1-q

(15)

Since a rescaling of both J and J; does not affect the mapping performed by the perceptron
{J; Jo), there is in principle no need to calculate the factor Z explicitly. If one puts 2; = g
and if the thresholds By and Jp are chosen to be zero, then (15) reduces to

-~

J = —z’—,usf DT (Na (16)

where Z' is a proper normalization factor. Finally one can verify that for a = 0 one recovers
the first order of (10).

The final result of this section (equations (14)}-(16)) shows that (in leading order in
the system size N) the connections J, expressed in terms of biased statistics of the binary
input variables s;, are found to be proportional to the ones obtained by applying the biased
Hebbian rule of [19] to the full set {—1. 1}" of input vectors. The biased Hebbian rule of
[19] seems to make use of global information; since the Perceptron leamning rule is non-
local (because of the appearance of the crucial global term T(s) —sgn(J - 8)) the resulting
interactions are indeed allowed to depend on non-local quantities. The condition on the task
vectors B for our analysis to apply is that for large N the inner product B - 8 must have a
Gaussian probability distribution. 1n addition we have found an expression for the threshold
Jo. In appendix B we show that the assumption of a Gaussian distribution is justified with
probability 1 if the task vectors B are drawn at random from, for instance, a spherically
symmetric distribution or a hypercube in R".

3.3. Numerical results

The performance in finite sysiems of our asymptotic (N — oo} expressions for the
conneciions is studied numerically. We calculate over a given ensemble P of linearly
separable tasks the average overlap Gy between the task function T'(s) = sgn(B - 8)
and the percepiron mapping upon choosing for the connections J{(B) either the truncated
expansions (10), (11) or the result {16) obtained with the Gaussian approach:

Oy = f dB P(B) {sgn[B - 5]sgn[J(B) - 5]}, a7
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with

e =27V

se[—-1.11¥

If @y = 1 then, with probability one, the mappings performed by B and J{B) will be
identical for tasks drawn from 7. For the ensemble P(B) of tasks we took the uniform
probability distribution over the N-dimensional hypercube. The integral in (17) is estimated
numerically from 100 samples of randomly drawn task vectors B. The average over the
input vector distribution is calculated exactly; since this average involves 2V input vectors
8, we have restricted the range of our experiments to N < 20.

In figure 1 we show the values of Qy thus obtained upon choosing for J(B) the
leading order in N for unbiased distributions (the Hebb rule) as given by (10) (+), the first
two leading orders in NV for unbiased distributions (the Hebb rule corrected for finite size
effects) as given by (11) (%) and the leading order in N for biased distributions (the biased
Hebb rule), for a.= 0.5, as given by (16) (O). For unbiased distributions we find that the
asymptotic expressions (10), (11) are such that the corresponding perceptron mappings are
almost identical to the task to be learned, even for relatively small system sizes. Including
the second order in N (%) indeed improves performance by correcting for finite-size effects.
The fact that even the leading term (+) performs perfectly for N < 4 can be proved
analytically. For biased distributions (O) we find that finite-size effects play a considerably
more important role.

;IJIIIEIJII!II!IJII"

|rlll|l|'IlIlli||lIr

0 & 10 15 20

N

Figure 1. The average performance Qu as a function of the system size N. The connections
are defined by the leading order in (10) (the Hebb rule for unbiased input distributions) (+), the
two leading orders in (11) (the Hebb rule plus finite-size corrections) () and the teading order
in (16) (the biased Hebb rule for biased input distributions) with bias & = 0.5 (Q).
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4. Inhomogeneous distributions: patterns

In this section we use the fixed-point theorem (3) for calculating analytically the connections
that perform a given task T for the more notorious case in which the training set consists of
a union of clusters around p = N patterns £ (training noise): 2 = U# Qu #{~1, 1}V,
We show that the asymptotic (N — 00) connections are given by the solutions of a set of
coupled non-linear equations.

4.1. Training with noise

We consider the case of having to classify a given set of p = aN input patterns
£ e {=1,1}¥ (for N — oo) using a perceptron without a threshold. To obtain a
classification which is stable against input noise, the task is defined on small, equally
large, disjunct neighbourhoods £, around the pattern £:

T(8)=T({") VeeQ,.

The set §2 is the union of the p subsets: 2 = UF £2,.. According to our fixed-point theorem
(4), applied to the present situation, the connections performing the task T on & are the
solutions of

1 & 1 & N
=Y TE")8)a, = — > (ssgn(J - g, . (18)
P,u=l p#=1

To simplify the analysis we replace the hard constraint (restricting the training vectors to
the union of the p discrete subsets £2,) by a soft constraint, in which training vectors have
a probability of occurrence which is strongly peaked near the patterns £*:

l — .
Q=] pe)= l - {sz ={-1,1", p(s) = ;ZP#(S)}
H M
with
pulor =] [%(1 +a)8, g + 51— a)as,__%,‘]
i

in which a is chosen close to 1. Formally the task corresponding to the soft constraint
is not neccessarily linearly separable and hence solutions of the correponding fixed-point
equations need not exist. However, fora — 1 and N — oo, the overlap between the
individual distributions j, becomes arbitrarily small, so that one can expect solutions to
exist. These solutions then correspond to the connections of a perceptron which is trained

with noise, as studied by Wong and Sherrington [20]. Replacing the hard constraint by the
soft one in the way described above, we obtain instead of (I8) the problem (19):

= Z T(E"E" = — Z(s sgn(J - 8)), . (19)

,u"-'l

To simplify notation we introduce the vectors ¢# = T(£#)£€#, in terms of which (due to
the absence of a threshold) the task T can be written as T{(*) = 1 (¥u). We can readily
perform the remaining averages in (19), with the result

a g 1 & al - ¢

BO—a8 [ (af-¢2)? .
+ J; Texp( 20 = )):|+O(J,-).
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In leading order we may therefore write

B =) [ 2

For convenience we introduce the parameter A = ‘32/(1 —a%) (so A—oocasa—»1)and

the stability parameters y, = Je¢r, Assuming that a solution J of (20) exists wnh Yu=>0
for alt i, we can use the asymptotic expansion of erf(x), )

erf(x)=1-— expt-xz) + ...

i
Jrx
and obtain

Z CHy 7 exp(—Ay?)

J=
>, exp (—-Aypz)

21

Note that (21) guarantees that any solution J will indeed be properly normalized (providing
a nice self-consistency test, since normalization has not explicitely been put in):

jz _ Z;a j ) C.uy”—l exp(_A}l;f)
zp exp (—A}’j)

By taking in (21) the inner products with the vectors ¢#, we obtain equations in terms of
stability parameters only:

=1.

l >, Ca¥y! CXP{_AK-z)
a3 2,exp(—AyE)

Yu = Yu = 0 ,(m = —C'u Cu - (22)

Equation (22) is the main result of this section. The sclution of (22), inserted into (21},
yields the solution of our original problem: the connections J.

Restoring the original variables according to {# = £#T(§*), we find that the connections
(21) are written in the form of 2 weighted Hebb rule with embedding strengths {w, }:

1 ~exp(—Ay3)
a(l/p)zpexp( AYZ)

fe oY wTEe w= @3)
14 c

These equations give interesting relations between stability parameters and cmbeddmg
strengths. The relations (23}, in combination w:th

Yu = Z C,uvwv - 24

are equivalent fo the equations (21), (22). A trivial example for which (23), (24) is sol_vable,
is the case of orthogonal patterns C,, = &,,, for which one finds y, = 1/,/a and the
connections are given by a normalized Hebb rule.
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4.2. The limit of zero training noise’

In this subsection we show that the solution(s) of the self-consistency equations (22),
in the limit of zero training noise (A — o), are identical with the optimal connections in
the Gardner sense. It has been demonstrated previously [5, 12] that in characterizing the
optimal connections one can distinguish two subsets of patterns. Patterns in the so-called
active set have positive embedding strengths w,,; the optimal connections are given by the
pseudo-inverse rule, restricted to the patterns in the active set. Patterns which are not in
the active set have zero embedding strengths; their stability parameters, however, are larger
than the stability parameters of the patterns in the active set.

We assume that, for large A, the stability parameters depend analytically on A~':

Ve = Z Vun A" .
20

Insertion into (22) gives the identity

fid

we now introduce ¥min = min, ¥.0. with which we can write

A—ro0 O

1 .
Yuo = lim — {Z Crolvio + OAD]  exp[ — AWE — ¥2a) = 2V0v + O(A“‘)]]
/ {um Y exp[ — Al — Vi) — 2¥p¥m + O(A-‘)]} : (25)
p

By taking the limit A — oc¢, those exponents for which y, > Ymin vanish (by construction
there is at least one index g with Y0 = Vnin). We define the index set

K={u]| Yubd = Venin) -
For A — oo we obtain from (25)

— __1_ ,Z:,"EK: Cu uV,;i,l, CXp [—zymin ]"'ul]
@ (1/P) 2 pex €50 [~ 2Vmin¥pi]

Yuo

This means that the A — oo embedding strengths w,,, defined in (23), will obey

_ 1 Yein XD =2Vmin¥ut]
a(1/p) zpe&' ‘3xP[—2YmmYp]
wy = 0 V,Uz g K.

Wy Yue K

Apparently the embedding strengths corresponding to indices in the index set K satisfy

Viuek Ymin = zc,uuwv
vek
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4 | !

p(v)”

21— R —]

Figure 2. Distribution p(y) of stabilities {3} obtained by solving numerically the set of
equations (22) for randomly drawn patierns (N = 400, p = 600, A = 16). The result is
averaged over 10 pattern realizations. Broken curve: distribution of stability parameters for
Gardner's optimal connections (according to {21]} if & = 1.5,

hence, if we dénote by C(X) the comelation matrix C, restricted to the indices in the set
K, the embedding strengths w,, are given by
wy = Vinin ZC(K:);J, nek
el )
w, =0 nwekK.

These are exactly the embedding strengths corresponding to the optimal perceptron,
described in the introduction of this subsection. One immediately recognizes the structure
of a pseudo-inverse applied to an active pattern set (our index set XU). A pattern outside the
active set has zero embedding strength. On the other hand, its stability parameter is larger
than the minimal stability parameter (¥.0 > ¥min for # € K).

This a posteriori justifies our assumption that, for large A (small amount of training
noise), the hard constraint on the training set could be replaced by a soft one. Our solution
is also in agreement with the work by Wong and Sherringtorn [20], who studied the leaming
of noisy patterns and found that.for -infinitesimally small- amounts of noise one obtains the
maximally stable connections.

4.3. Numerical results

Apart from proving that in the limit of zero training noise A — oo the solutions of the
set of equations (22) become identical to the optimal interactions in the Gardner sense, one
can of course also simply solve the set (22) numerically. The result, presented in the form
of the familiar distribution p(y) of stabilities, shows how for finite A one approaches the
analytical expression for p(y) as found by Kepler and-Abbott [21]. figure 2 shows such
a result, obtained by solving (22) numerically for p = 600 randomly drawn patterns in an
N = 400 network with a level of training noise given by A = 16. The distribution p(y)
[21] of Gardner’s optimal interactions [3] for ¢ = 1.5 is plotted as a reference.
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5. Discussion

The aim of this paper was to find analytical expressions for the connections of large
perceptrons. We tried to calculate the connection vectors J that perform a given task
T on a given input set £ € {—1.1}¥, by using the fact that such connections are fixed
points of the perceptron learning rule. For small values of the learning parameter this rule
can be split into a macroscopic differential equation describing deterministic evolution and
a part describing fluctuations. By proving that the fixed points of the deterministic equation
are identical to the fixed points of the full stochastic rule, we obtain a reduction of the
original problem (finding the solution of a set of |€2| coupled inequalities) to the problem
of finding the solution of a set of N coupled non-linear equations.

For the simplest case in which the training set consists of all possible input vectors,
Q = {~1,1}", the fixed-point equations enable us to calculate the connections as a series
expansion in powers of 1/+/N. The leading term in this expansion turns out to be either the
Hebb rule {for unbiased distributions) or the biased Hebb rule (for biased distributions). The
performance of our asymptotic expressions (and finite-size corrections) on small systems is
studied numerically. If, on the other hand, the training set consists of an extensive number
p = alN of prototype patterns £* in combination with small regions £2, around these
patterns (i.e. training with noise), we find that the connections satisfy a self-consistent,
physically transparant set of non-linear equations. In the limit of zero training noise the
solution of these equations is shown to correspond exactly to the interactions with maximal
stability in the Gardner sense.

Most statistical mechanical studies of (maximally stable) perceptrons concentrate on
studying properties of trained systems [1 1] (storage capacity, average training error, average
generalization error, nature of phase transitions, etc). In order to obtain these results one
has to average the quantities of interest {or, equivalently, the free energy from which
such quantities can be obtained by differentiation) over the distribution from which the
training set is chosen. We believe that our approach may be complementary to such studies,
in that we focus on the explicir construction of the connections of trained perceptrons,
Furthermore, in the case of having an extensive (p = a/N) training set, the embedding
strengths are formulated, through (22), (23), directly in terms of the pattemn cormrelation
mairix; no averaging over the distribution of input vectors is involved.
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Appendix A. The Distribution P(z)

In this appendix we calculate for any given vector K € R" the probability distribution
P(z) {in the spirit of the Edgeworth §eﬁes [22]), defined by

P(2)={8(z— K -8)),
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where 8 € {— I 1} and p(s) = 2~¥. Using the integral representation of the 3-function
we find

P(z)-_—K- dke xp[ +ZEogcos(kK)] (AD)

where K = | K| and £ = K~'K. We now expand Iogcos(x) in a power series [15]:

221 2% — 1) Byl

) :
logcos(x) = wixz - ZC,,x:’” Cp =

= n(2n)!
The coefficients B; are the Bernoulli numbers {15} (By =1, By = —%, By = %, etc). This
expansion enables us to write (Al) as
P(z) = 1 fdkex Ly —Zc Q (K)ic”'] (A2)
T 27K P72 5 "

_where 0.(K) = p K 2 2 10, 1]. If we also make the expansion

exp[-—ZC,, Q"(Ié')kz”:[ =1- ZDn(f?)kZ"

nz2 nz2

we can perform the integration over the variable & in (A2) and arrive at the final result:

Pz = Y Do)V 27" H,

o] 2 - ok ()

where the functions H,,(x) are the Hermite polynomials [15]

(A3}

5, d”
Hn(x) = (= )" exp(x”) 7 exp(—x?)

The coefficients D,(K) are given by

5y — (=D*
DH(X).: Z (_k—-i-_-l_)f-zr“

k<in/2)-1

=Y g [Cmm .. o G (R

my =2

Appendix B. Validity of the Gaussian assumption

In this appendix we briefly discuss the vahdlty of the assumption (often made in the
literature) that the stochastic variable z = Z =1 J;5; has a Gaussian probability distribution
in the limit N — oc, where

p(s) = HPJ(S;') Cp(8) = 1+ a8y + $(1—a;)8;_ ‘ |a; ] < |dmax| < 1.
; A ,
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It is clear that P(z) will not always be Gaussian, since one can easily construct counter-
examples:

=k a, =0 k=1...N. (B1}
For this specific example one finds

2 4
A . 5 _71'_ . 4 iz
w=E=0  fm=% Jm =T

So the distribution of z tends not to a Gaussian, since even in the limit N — o0 one finds
(%) # 3({z%). Starting from the central-limit theorem [22], it is straightforward to show
that the condition on the normalized vector J for amiving at a Gaussian distribution for
z=3; Jysp, is

v N
lim 9[..',- —ey Jﬁ] =0 Ye >0 (B2)
] =1

Nooo £
J’=

in which €[x] is the step function. One can check that if (B2) holds, ail the non-Gaussian
contributions in the probability distribution (A3) will vanish in the limit ¥ — oco. The
condition (B2) is clearly violated by the counter-example (B1). If the vector J is drawn
from a spherically symmetric distribution, or from a hypercube with uniform distribution,
then one can show that condition (B2) is satisfied with probability 1.
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